Local field potentials and the encoding of whisker deflections by population firing synchrony in thalamic barreloids.
نویسندگان
چکیده
In layer IV of rat somatosensory cortex, barrel circuitry is highly sensitive to thalamic population firing rates during the first few milliseconds of the whisker-evoked response. This sensitivity of barrel neurons to thalamic firing synchrony was inferred previously from analysis of simulated barrel circuitry and from single-unit recordings performed one at a time. In this study, we investigate stimulus-dependent synchronous activity in the thalamic ventral posteromedial nucleus (VPm) using the more direct approach of local field potential (LFP) recording. We report that thalamic barreloid neurons generate larger magnitude LFP responses to principal versus adjacent whiskers, to preferred versus nonpreferred movement directions, and to high- versus low-velocity/acceleration deflections. Responses were better predicted by acceleration than velocity, and they were insensitive to the final amplitude of whisker deflection. Importantly, reliable and robust stimulus/response relationships were found only for the initial 1.2-7.5 ms of the thalamic LFP response, reflecting arrival of afferent information from the brain stem. Later components of the thalamic response, which are likely to coincide with arrival of inhibitory inputs from the thalamic reticular nucleus and excitatory inputs from the barrel cortex itself, are variable and poorly predicted by stimulus parameters. Together with previous results, these findings underscore a critical role for thalamic firing synchrony in the encoding of small but rapidly changing perturbations of specific whiskers in particular directions.
منابع مشابه
Rapid changes in thalamic firing synchrony during repetitive whisker stimulation.
Thalamic firing synchrony is thought to ensure selective transmission of relevant sensory information to the recipient cortical neurons by rendering them more responsive to temporally correlated input spikes. However, direct evidence for a synchrony code in the thalamus is limited. Here, we directly measure thalamic firing synchrony and its stimulus-induced modulation over time, using simultane...
متن کاملAngular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex.
Local circuitry within layer IV whisker-related barrels is preferentially sensitive to thalamic population firing synchrony, and neurons respond most vigorously to stimuli, such as high-velocity whisker deflections, that evoke it. Field potential recordings suggest that thalamic barreloid neurons having similar angular preferences fire synchronously. To examine whether angular tuning of cortica...
متن کاملDendroarchitecture of relay cells in thalamic barreloids: a substrate for cross-whisker modulation.
A double-labeling protocol was used to determine how the dendroarchitecture of relay cells relates to the three-dimensional structure of barreloids in the ventral posterior medial nucleus of the rat thalamus. Single barreloids were retrogradely labeled by injecting Fluoro-Gold in identified barrel columns, and single relay cells activated by the same whisker, or by an adjacent whisker located o...
متن کاملState-dependent processing of sensory stimuli by thalamic reticular neurons.
Inhibitory neurons of the thalamic reticular (RT) nucleus fire in two activity modes, burst and tonic, depending on an animal's behavioral state. In tonic mode, depolarized RT cells fire single action potentials continuously, whereas burst firing consists of grouped discharges separated by periods of quiescence. To determine how these firing modes affect sensory-evoked RT responses, single-unit...
متن کاملEfficient population coding of naturalistic whisker motion in the ventro-posterior medial thalamus based on precise spike timing
The rodent whisker-associated thalamic nucleus (VPM) contains a somatotopic map where whisker representation is divided into distinct neuronal sub-populations, called "barreloids". Each barreloid projects to its associated cortical barrel column and so forms a gateway for incoming sensory stimuli to the barrel cortex. We aimed to determine how the population of neurons within one barreloid enco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2003